
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

無線メッシュネットワークのための固定バックオフ時間切替方式のLinux
実装設計

スリツールスタスカリドト† 舩曵 信生† 中西 透† 渡邊 寛† 田島 滋人††

†岡山大学大学院自然科学研究科 〒 700-8530岡山市北区津島中 3-1-1
††大阪大学大学院基礎工学研究科 〒 560-8531大阪府豊中市待兼山町 1-3

E-mail: †dhoto@sec.cne.okayama-u.ac.jp, ††{funabiki,nakanisi,can}@cne.okayama-u.ac.jp,
†††tajima@ics.es.osaka-u.ac.jp

あらまし 本グループでは，柔軟で安価な大規模インターネットアクセスネットワークとして，無線メッシュネット

ワークWIMNETの研究を進めている．WIMNETは，互いに無線通信を行う複数のアクセスポイント（AP）で構成さ

れ，ホストは通常，AP間のマルチホップ通信によりインターネットとの通信を行う．WIMNETでは，特定リンクが

無線帯域を独占し，それ以外のリンクの帯域が不足することで通信性能の劣化が発生するが，その抑制には，通信量

に応じて各無線リンクの動作を制御することが有効である．そこで，本グループでは，固定バックオフ時間切替 (FBS)

方式の提案を行い，QualNetシミュレータを用いたシミュレーションによる評価を行ってきた．本論文では，実機評

価を目的として，FBS方式の Linux実装のための設計を示す．本設計は，Linuxカーネルの 5つのプログラムの修正

および実装で構成される．

キーワード 無線メッシュネットワーク，固定バックオフ時間切替 (FBS)方式，リナックス，実装

A Linux Implementation Design of Fixed Backoff-time Switching Method for
Wireless Mesh Networks

Sritrusta SUKARIDHOTO†, Nobuo FUNABIKI†, Toru NAKANISHI†, Kan WATANABE†, and Shigeto

TAJIMA††

† Graduate School of Natural Science and Technology, Okayama University
†† Graduate School of Engineering Science, Osaka University

E-mail: †dhoto@sec.cne.okayama-u.ac.jp, ††{funabiki,nakanisi,can}@cne.okayama-u.ac.jp,
†††tajima@ics.es.osaka-u.ac.jp

Abstract As a flexible and cost-efficient scalable Internet access network, we have studied architectures, protocols, and de-

sign optimizations of the Wireless Internet-access Mesh NETwork (WIMNET). WIMNET is composed of wirelessly connected

access points (APs), where any host can basically access to the Internet through multihop communications between APs. In

WIMNET, undesirable situations can often happen such that some links dominate the bandwidth while others become insuffi-

cient due to the limited shared bandwidth. To improve the performance by avoiding them, controls of activation chances for

wireless links depending on their traffics are effective. Thus, previously, we have proposed the Fixed Backoff-time Switching

(FBS) method for the CSMA/CA protocol, and verified the effectiveness using the QualNet simulator. In this paper, we present

an implementation design of the FBS method in Linux kernel to show its practicality and investigate the performance in a

real network. Our design consists of implementations or modifications of the five programs: Kernel configuration, Debugfs,

Minstrel, iw, and FBSdaemon.
Key words Wireless mesh network, fixed backoff-time switching (FBS) method, Linux, implementation

— 1 —

1. Introduction

Recently, a wireless mesh network has been extensively studied

as a promising network technology for a flexible and cost-efficient

solution to expand the communication service area by distributing

wireless mesh routers on a network field [1]～[3]. The mesh routers

are connected with each other through multihop wireless commu-

nication links using IEEE 802.11 standards, in addition to wireless

links between client hosts and routers. Then, as a scalable Internet

access network based on this technology, we have studied architec-

tures, protocols, and design optimizations of the Wireless Internet

access Mesh NETwork (WIMNET) [3]. For a simple architecture,

WIMNET is composed of only access points (APs) as mesh routers

as shown in Figure 1. At least one AP acts as a GateWay (GW) to

the Internet. Any host in WIMNET can be connected to the Internet

through multihop communications between APs and the GW after

associated with one neighbor AP.

Fig 1: Outline of WIMNET.

WIMNET adopts the commonly used CSMA/CA (Carrier

Sense Multiple Access with Collision Avoidance) protocol of the

IEEE802.11 MAC (Media Access Control) for the shared commu-

nication media access by resolving contentions among interfered

wireless links [4]. As illustrated in Figure 2, in this protocol, any

node holding a transmission packet is on standby for a constant

DIFS period and a random time called the backoff-time before start-

ing the data frame transmission, to avoid frame collisions among

contending nodes while providing their fairness. At each transmis-

sion chance, a random value within a size called the Contention

Window (CW) is selected for the backoff-time. When a node fails in

the transmission, the CW size is doubled to reduce the probability

of the collision occurrence in the retransmission, which is called the

binary exponential backoff. When the node succeeds in a transmis-

sion, it resets the CW size to the initial one.

Fig 2: Timing chart for data frame transmission.

Unfortunately, this conventional CSMA/CA protocol is not suf-

ficient for multihop communications in WIMNET. Firstly, heavy

congestions of links around the GW can be bottlenecks of whole

communications in WIMNET, because these links have to handle a

lot of packets to/from the GW for the Internet access. Thus, they

should be activated with much higher priorities than other links.

Secondly, interferences among these congested links may not be

resolved by a random backoff-time in the CSMA/CA protocol be-

cause of the limited CW size. Here, we note that the initial CW size

is small, and even the maximum CW size is limited. Then, multi-

ple conflicting links can be activated simultaneously by generating

the same or similar backoff-times at their source nodes. As a re-

sult, any link cannot complete the packet transmission successfully,

and needs a retransmission that may cause further conflicts. Hence,

using the conventional CSMA/CA protocol, WIMNET may cause

a lot of packet losses and intolerable delays, which cannot afford

real-time applications such as IP-phones and IP-TVs, although their

popularity has been increased with advancements of digital commu-

nication technologies.

In order to the abovementioned problem, we have proposed the

Fixed Backoff-time Switching (FBS) method for the CSMA/CA pro-

tocol, and shown its implementation on QualNet [5] [6] [10]. Qual-

Net [11] adopts a more realistic physical model than other network

simulators such as ns-2 [12].

In the FBS method, the three constant parameters, namely the

target link activation rate, the active backoff-time, and the passive

backoff-time, must be assigned to every link before starting commu-

nications. Here, the link activation means that the source node of the

corresponding wireless link sends out a signal for a frame transmis-

sion. The target link activation rate represents the rate of activating

the corresponding link that is necessary to handle the link traffics

properly. The active backoff-time represents a shorter waiting time

for the link to be activated preferentially when it holds packets for

transmissions. The passive backoff-time represents a longer waiting

time for the link to be activated only if the contending links using

the active backoff-time are not activated, where a larger value than

any active backoff-time is used. Besides, for any backoff-time of

any link, a different value is assigned from each other to avoid si-

multaneous link activations as best as possible, and the magnitude

follows the descending order of expected traffic loads of links so

that congested links can be activated more frequently.

During communications, the actual link activation rate is ob-

served by counting the numbers of link activation chances and ac-

tually activated times for each link, and taking their fraction. If this

value is smaller than the target activation rate, the active backoff-

time is selected for the preferential activation of the link. Otherwise,

the passive backoff-time is selected. Because different values are as-

signed to them, contentions among interfered links are expected to

be resolved.

In this paper, we present an implementation design of the FBS

— 2 —

method on a Linux PC to evaluate the performance in real net-

works. As an open source operating system, Linux has been used

as a platform to implement new protocols, methods, and devices for

advancements of wireless networks including wireless mesh net-

works [13]- [16]. Our implementation design consists of implemen-

tations or modifications of the five programs: Kernel configuration,

Debugfs, Minstrel, iw, and FBSdaemon.

The rest of this paper is organized as follows: Section 2. reviews

the FBS method. Section 3. presents our Linux implementation de-

sign of the FBS method. Section 4. concludes this paper with some

future works.

2. Review of FBS Method

In this section, we briefly review the FBS method for WIMNET.

2. 1 Overview of FBS Method
The FBS method uses the active backoff-time and the passive

backoff-time for each link, and selects either of them as a backoff-

time at a frame transmission by comparing the target link activa-

tion rate and the actual link activation rate. Any backoff-time is

assigned a different fixed value from each other so that no pair of

the conflicting links may be activated simultaneously. Besides, the

backoff-time for a link with larger traffic is assigned a smaller value

than that for a link with smaller one, so that congested links can be

activated preferentially. Furthermore, any active backoff-time is as-

signed a smaller value than a passive one, so that links using active

ones have higher priorities in activations than links using passive

ones.

During communications, every time a node holding packets de-

tects that the channel for transmissions becomes free, it updates both

the target activation rate and the actual activation rate. If the actual

one is smaller than the target one, it selects the active backoff-time

to let the link be activated, because the current activation rate of the

link is not sufficient to handle its traffic. On the other hand, if it

is larger, it selects the passive backoff-time to let other links with

active backoff-times be activated with higher priorities. A link with

the passive backoff-time can be activated only if any conflicting link

with the active backoff-time does not hold packets. The following

subsections describe how to calculate the three parameters in the

FBS method.

2. 2 Target Link Activation Rate
For a wireless link li j transmitting packets from APi to AP j for

i = 1, · · · ,N and j = 1, · · · ,N, the target link activation rate rti j can

be calculated by:

rti j =
tni j

ani j
(1)

where tni j represents the target number of activating link li j per sec-

ond, and ani j does the average number of link activations per sec-

ond. tni j can be given from the requested bit rate by:

tni j =
rbi j

f bi j
× (1 + f ei j) (2)

where rbi j represents the number of bits per second that link li j

needs to be transmitted, f bi j does the average number of bits in

one transmitted frame, and f ei j does the rate of causing the frame

transmission error. ani j can be given by:

ani j =
1

f ti j
(3)

where f ti j represents the average duration time of one frame trans-

mission.

Among the parameters for the target link activation rate, rbi j

should be calculated by taking the summation of the bit rates re-

quested by the applications using link li j in the routing path of WIM-

NET. The others, f bi j, f ei j, and f ti j, should be updated during com-

munications by the following equations:

f bi j =
sbi j

s fi j
(4)

f ei j =
f fi j

s fi j + f fi j
(5)

f ti j =
t

s fi j + f fi j + o fi j
(6)

where sbi j, s fi j, f fi j, and o fi j represent the total number of success-

fully transmitted bits by link li j, the total number of successfully

transmitted frames, the total number of failed frames, and the to-

tal number of transmitted frames of the interfered links with link

li j, when t seconds have passed since the communication started in

WIMNET, respectively.

2. 3 Actual Link Activation Rate
The actual link activation rate rai j for link li j is obtained by divid-

ing the number of successfully transmitted frames with the number

of possibly activating chances for the link:

rai j =
s fi j

aci j
(7)

where aci j represents the number of possibly activating chances of

link li j.

In the CSMA/CA protocol, aci j is hard to be obtained. Unlike

the TDMA protocol where the link activations are synchronized

by a single clock, the timing of counting the number of activating

chances is not clear in the CSMA/CA protocol. Besides, the link

activation chances resulting in transmission failures must be con-

sidered. In this paper, aci j is counted every time APi detects that the

channel becomes free.

2. 4 Active/Passive Backoff-time
The active backoff-time tam

i j and the passive backoff-time tpm
i j for

link li j are calculated by the following procedure, where m rep-

resents the number of consecutively failed transmissions (or retry

counter) due to heavy traffics and is saturated by 6. These backoff-

times are updated every time the routing path is changed due to the

— 3 —

topology change by adding a new AP or removing an existing AP

and the host distribution change by the host join or leave to WIM-

NET. Then, they are fixed during communications.

（ 1） Calculate the number of bits to be transmitted per second

rbi j for link li j by taking the summation of the bit rates for all the

communication requests by the hosts using li j:

rbi j =
∑
k∈Hi j

hrk (8)

where Hi j represents the set of the host indices using link li j in the

routing path, and hrk does the requested bit rate (bps) of host k.

（ 2） Sort every link in descending order of rbi j, where the

tiebreak is resolved by the number of hosts using this link for the

routing path.

（ 3） Set this sorted order to the link priority pi j for li j.

（ 4） Calculate the active/passive backoff-times for li j:

taminm
i j = CWmin ·

(
2m−1 + 2m−2 · pi j−1

P

)
,

tamaxm
i j = CWmin ·

(
2m−1 + 2m−2 · pi j

P

)
,

tam
i j = rand

[
taminm

i j, tamaxm
i j

]
,

(9)

where taminm
i j and tamaxm

i j represent the minimum and maximum

values for the active backoff-time for li j when the retry counter is

m, CWmin does the initial CW size, and P does the largest priority

among the links. In our simulations, CWmin = 31 is used in any

case.

tpminm
i j = CWmin ·

(
2m−1 + 2m−2 · P+pi j−1

P

)
,

tpmaxm
i j = CWmin ·

(
2m−1 + 2m−2 · P+pi j

P

)
,

tpm
i j = rand

[
tpminm

i j, tpmaxm
i j

]
.

(10)

where tpminm
i j and tpmaxm

i j represent the minimum and maximum

values for the passive backoff-time for li j when the retry counter is

m.

3. Design for Linux Implementation of FBS
Method

In this section, we present our design for Linux implementation

of the FBS method. For convenience, we call a Linux PC imple-

menting the FBS method a Linux-FBS in this paper.

3. 1 Overview
Basically, in this design for a Linux-FBS, we collect the necessary

information from the statistics in the devices, to calculate the fixed

back-off time in the FBS method, and assign its calculated value to

AIFS for use as the actual backoff-time in the network device with

CWmin = CWmax = 0, as shown in Figure 3.

For our implementation design of the FBS method in Linux ker-

nel, we have considered implementations or modifications of the

following five programs.

• Kernel configuration is modified to activate Debugfs and

Minstrel.

• Debugfs is used to obtain the necessary information in the

Fig 3: Data Flow for FBS Method in Linux Implementation.

kernel space at the user space through Minstrel.

• Minstrel is used to obtain the necessary information for the

FBS method.

• iw is modified to allow the assignment of a specified value

(fixed backoff-time) to CWmin.

• FBSdaemon is newly implemented as a daemon application

to calculate the target/active link activation rates and select the fixed

back-off time by comparing them as the main procedure of the FBS

method.

3. 2 Kernel configuration
For our Linux-FBS, we need to activate some features in Linux

kernel configurations such as Debugfs [17] and Minstrel [18] that are

used for wireless networks. Therefore, we set up the configuration

of the Linux kernel as follows:

CONFIG_DEBUG_FS=y

CONFIG_DEBUG_KERNEL=y

CONFIG_WIRELESS=y

CONFIG_CFG8011=m

CONFIG_CFG80211_DEBUGFS=y

CONFIG_LIB80211=m

CONFIG_LIB80211_DEBUG=y

CONFIG_MAC80211=m

CONFIG_MAC80211_RC_MINSTREL=y

CONFIG_MAC80211_RC_MINSTREL_HT=y

CONFIG_MAC80211_RC_DEFAULT_MINSTREL=y

CONFIG_MAC80211_RC_DEFAULT="minstrel_ht"

CONFIG_MAC80211_DEBUGFS=y

For the wireless drivers for our implementation, we set up the

configuration of the Linux kernel as follows:

CONFIG_ATH_COMMON=m

CONFIG_ATH_DEBUG=y

CONFIG_ATH5K_DEBUG=y

CONFIG_ATH9K_DEBUGFS=y

CONFIG_ATH9K_HTC_DEBUGFS=y

3. 3 Debugfs
Debugfs is a special file system available in a Linux kernel. It is

technically referred as a kernel space-user-space interface, and is a

— 4 —

simple RAM-based file system that is designed for debugging the

kernel. Debugfs allows a kernel developer to make information in

the kernel space available in the user space. To compile a Linux

kernel with Debugfs, we need to set CONFIG DEBUG FS option

yes. Then, we need to mount Debugfs with the following command:

mount -t debugfs none /sys/kernel/debug

3. 4 Minstrel
Minstrel is a mac80211 rate control algorithm ported over from

MadWifi that supports multiple rate retries. Minstrel has been

claimed to be one of the best rate control algorithms. Minstrel pro-

vides the success/failure information, the actual data rate communi-

cation, and the status of interface.

After mounting Debugfs, we can use Minstrel from a

subdirectory of Debugfs. Inside the directory of /sys/ker-

nel/debug/ieee80211/phy0/netdev:wlan0/stations, subdirectories ex-

ist where each subdirectory corresponds to each wireless node

in the network such as a host (client PC) that is associated

with the Linux-FBS. The name of a subdirectory is the MAC

address of the associated node. For example, /sys/kernel/de-

bug/ieee80211/phy0/netdev:wlan0/stations/

00:22:cf:72:21:22/ represents a subdirectory corresponding to a

node whose mac address is 00:22:cf:72:21:22. Inside of this sub-

directory, we can find the files of the minstrel information for this

node.

For the FBS method, we use the following files from Minstrel:

rc stats, tx bytes, tx packets, tx retry count, and tx retry failed.

From the tx packets file, we can get the value for s fi j (the total

number of successfully transmitted frames of link li j). From the

rc stats file, we can get the value for aci j (the number of possibly

activating chances) from the attemp value. Then, we can calculate

the value for rai j (actual link activation rate). Also, from this file,

we can get the value for rbi j (the number of bits to be transmitted

per second for link li j) from the throughput value.

Then, we can get the value for sbi j (the total number of success-

fully transmitted bits by link li j) from the tx bytes file, the value for

o fi j (the total number of transmitted frames of the interfered links

with link li j) from the tx retry count file, and the value for f fi j (the

total number of failed frames) from the tx retry failed file, respec-

tively. Then, we can calculate the value for tai j (target link activa-

tion rate).

3. 4. 1 Modification of iw

iw [19] is a new nl80211 based CLI (Command Line Interface)

configuration utility for wireless devices. nl80211 is a new IEEE

802.11 netlink interface public header. iw supports most of the new

drivers that have been recently added to the Linux kernel. In our

Linux-FBS implementation, we use iw to assign the fixed backoff-

time in the FBS method by changing the values of the variables for

Wi-Fi Multimedia (WMM) in IEEE802.11e, namely CWmin, CWmax,

AIFS , and T XOP.

However, a default application of iw cannot access to or modify

the values for them. Thus, we modified the source code of iw so that

it is possible. In this source code modification, we use a function in

the hostapd application so that we can change the values for CWmin,

CWmax, AIFS , and T XOP. Actually, we add the handle txq params

function in the phy.c file to access to T XQ PARAMS in wireless

Linux kernel parameters.

Listing 1 shows our modification of the source code for iw.

s t a t i c i n t h a n d l e d t x q p a r a m s (s t r u c t n l 8 0 2 1 1 s t a t e ∗ s t a t e

, s t r u c t n l c b ∗cb , s t r u c t n l msg ∗msg , i n t a rgc ,

c h a r ∗∗ a rgv)

{
u 8 queue , a i f s ;

u 1 6 cwmin , cwmax , txop ;

s t r u c t n l a t t r ∗ t x q ;

/ / S a n i t y c h e c k i n g

. . .

queue = s t r t o u l (a rgv [0] , NULL, 10) ;

cwmin = s t r t o u l (a rgv [1] , NULL, 10) ;

cwmax = s t r t o u l (a rgv [2] , NULL, 10) ;

t xop = s t r t o u l (a rgv [3] , NULL, 10) ;

a i f s = s t r t o u l (a rgv [4] , NULL, 10) ;

p r i n t f (” S e t TXQ PARAMS f o r c l a s s [%d] : cwmin=%d cwmax

=%d txop=%d a i f s=%d\n ” , queue , cwmin , cwmax ,

txop , a i f s) ;

/ / Range c h e c k i n g f o r t h e a c c e s s c l a s s param

. . .

t x q = n l a n e s t s t a r t (msg ,

NL80211 ATTR WIPHY TXQ PARAMS) ;

i f (! t x q)

r e t u r n −ENOBUFS;

s t r u c t n l a t t r ∗ t x = n l a n e s t s t a r t (msg , queue) ;

NLA PUT U8 (msg , NL80211 TXQ ATTR QUEUE , queue) ;

NLA PUT U16 (msg , NL80211 TXQ ATTR CWMIN , cwmin) ;

NLA PUT U16 (msg , NL80211 TXQ ATTR CWMAX , cwmax) ;

NLA PUT U16 (msg , NL80211 TXQ ATTR TXOP , tx op) ;

NLA PUT U8 (msg , NL80211 TXQ ATTR AIFS , a i f s) ;

n l a n e s t e n d (msg , t x) ;

n l a n e s t e n d (msg , t x q) ;

r e t u r n 0 ;

n l a p u t f a i l u r e :

r e t u r n −ENOBUFS;

}
COMMAND(s e t , t xq pa rams , ”< a c c e s s c l a s s > <cwmin> <cwmax>

< txop> < a i f s >” , NL80211 CMD SET WIPHY , 0 , CIB PHY ,

h a n d l e t x q p a r a m s , ” S e t TXQ PARAMS wi th Queue , CWmin

, CWmax, TXOP, AIFS\n ”) ;

Listing 1: ”IW modification in phy.c”

— 5 —

Using the iw phy0 set txq params 0 0 0 0 10 command, we set

the values of the WMM variables for class 0 (Best Effort), such that

CWmin = CWmax = T XOP = 0, and AIFS = 10 if the selected fixed

backoff-time in the FBS method is 10 for this link.

3. 5 FBSdaemon
We implement the procedure for the FBS method by generating

a daemon application using Perl. In this paper, we call this applica-

tion FBSdaemon.

The main cycle for the backoff-time control for the FBS method

in FBSdaemon consists of the four steps: 1) reading the necessary

files from Minstrel, 2) calculating both the target and active link

activation rates, 3) selecting the fixed back-off time by comparing

the both rates, and 4) assigning the selected fixed back-off time to

AIFS by using the syntax system and calling the modified iw appli-

cation. Besides, FBSdaemon can give a log report, and can run in

the background.

Algorithm 1 shows this procedure in FBSdaemon.

input : Minstrel files: rc stats, tx bytes, tx packets, tx retry count,

tx retry f ailed

BO file

output: AIFS

Perl initialization for Daemon, Log, Files;

begin
Log start;

Daemonize;

for (;;) do
aci j ← read(rc stats, attemp);

s fi j ← read(rc stats, success);

sbi j ← read(tx bytes);

s fi j ← read(tx packets);

o fi j ← read(tx retry count);

f fi j ← read(tx retry f ailed);

active← read(bo f ile, active);

passive← read(bo f ile, passive);

Calculate rai j, tai j;

if rai j < tai j then
AIFS ← active

else
AIFS ← passive

end
system(”iw phy0 set txq params 0 0 0 0 AIFS ”);

wait(300s);

end

end

Algorithm 1: FBS Daemon

4. Conclusion

In this paper, we presented a Linux implementation design for

the Fixed Backoff-time Switching (FBS) method for the CSMA/CA

protocol in the Wireless Internet-access Mesh Network (WIMNET).

Our implementation design consists of implementations or modifi-

cations of the five programs: Kernel configuration, Debugfs, Min-

strel, iw, and FBSdaemon. In our future works, we will refine

the codes of the implementation, generate a testbed with multiple

Linux-APs implementing the FBS method, and investigate the per-

formance of our proposal in a real network.

Acknowledgment

This work is partially supported by KAKENHI (22500059).

文 献
[1] I. F. Akyildiz, X. Wang, and W. Wang,“Wireless mesh networks:

a survey,”Comput. Netw. ISDN Syst., vol. 47, no. 4, pp. 445-487,
March 2005.

[2] Y. Zhang, J. Luo, and H. Hu, Wireless mesh networking: architec-
tures, protocols and standards, Auerbach Pub., 2006.

[3] N. Funabiki edited, Wireless mesh networks, InTech - Open Access
Pub., 2011, http://www.intechopen.com/books/show/title/wireless-
mesh-networks.

[4] Part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, IEEE Std. 802.11, 1999.

[5] S. Tajima, N. Funabiki, and T. Higashino, ”A proposal of fixed
backoff-time switching method by link activation rate for wireless
mesh networks,” Proc. Int. Conf. Complex, Intell., Software Inten-
sive Sys. (CISIS), pp. 647-652, 2011.

[6] N. Funabiki, S. Sukaridhoto, Z. Wang, T. Nakanishi, K. Watanabe,
and S. Tajima, ”An implementation of fixed backoff-time switching
method on IEEE 802.11 MAC protocol for wireless Internet-access
mesh network,” Proc. Int. Work. Smart Info-Media Sys. Asia (SISA
2011), pp. 67-72, Oct. 2011.

[7] R. Morris, ”TCP behavior with many flows,” Proc. Int. Conf. Netw.
Protocols, pp. 205-211, Oct. 1997.

[8] A. Vishwanath, V. Sivaraman, and G. N. Rouskas, ”Anomalous loss
performance for mixed real-time and TCP traffic in routers with very
small buffers,” IEEE/ACM Trans. Networking, vol. 19, no. 4, pp.
933-946, Aug. 2011.

[9] A. S. Tanenbaum, Computer Networks, 5th ed., Prentice Hall, 2010.
[10] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and K. Watanabe, ”A pro-

posal of CSMA fixed backoff-time switching protocol and its Imple-
mentation on QualNet simulator for wireless mesh networks”, Proc.
WAINA, March 2012.

[11] QualNet simulator, Scalable network tech., http://www.scalable-
networks.com.

[12] G. A. D. Caro,“ Analysis of simulation environments for mobile ad
hoc networks,”Tech. Rep., no. IDSIA-24-03, Dec. 2003.

[13] M. Vipin and S. Srikanth,“Analysis of open source drivers for IEEE
802.11 WLANs,”Proc. ICWCSC 2010, 2010.

[14] K. Chebrolu and B. Raman,“ FRACTEL: a fresh perspective on (ru-
ral) mesh networks,”Proc. ACM SIGCOMM NSDR, Aug. 2007.

[15] A. Sharma and E. M. Belding,“ FreeMAC: implementing a multi-
channel TDMA MAC on 802.11 hardware,”http://moment.cs.
ucsb.edu/˜asharma/freemac-mobisys.pdf.

[16] P. Djukic and P. Mohapatra,“ Soft-TDMAC: a software TDMA-
based MAC over commodity 802.11 hardware,”Proc. INFOCOM,
April 2009.

[17] Debug - Linux Wireless http://linuxwireless.org/en/users/Drivers/
ath9k/debug.

[18] Minstrel - Linux Wireless, http://linuxwireless.org/en/developers/
Documentation/mac80211/RateControl/minstrel/.

[19] iw - Linux Wireless http://wireless.kernel.org/en/users/
Documentation/iw.

— 6 —

